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	 Forecasting convection initiation (CI) has advanced greatly during the past decade through the use of high-
resolution satellite observations and model output. One of the primary CI products used in forecast operations 
is based on GOES-16 visible and infrared imagery along with GLM lightning flash detections to determine the 
location of growing ice-containing cumulus clouds that are the precursor to developing thunderstorms. Another 
approach to CI forecasting that has recently become available is high frequency output from numerical weather 
prediction (NWP) models such as the Warn-on-Forecast System (WoFS). NWP model simulated composite 
reflectivity forecasts are one method used to determine when and where severe thunderstorms might develop. 
However, waiting for high reflectivity (> 40 dBZ) to be created within the NWP model limits the potential lead 
time available to forecasters when using WoFS output to anticipate areas where convection might form. Also, 
forecast reflectivity alone does not always give an indication of whether or not the precipitation developed by the 
NWP model is convective in nature. To address these limitations, this work applies a CI forecasting methodology 
developed for GOES satellite data on synthetic satellite imagery produced from WoFS output. Forecast cloud 
objects are tracked over a 10-min interval and CI forecasting parameters are applied to determine whether or 
not these cloud objects will continue to develop into organized thunderstorms.

ABSTRACT

(Manuscript received 13 December 2022; review completed 8 August 2023)

1.	 Introduction

	 Convection initiation (CI) forecasting associated 
with high impact weather events is an important 
aspect of operational weather forecasting and remains 
a challenging topic. Many advances in CI forecasting 
have been made through the use of high resolution 
satellite data from the GOES-R series satellites. The 
Advanced Baseline Imager (ABI) onboard GOES-R 
measures Earth reflected and emitted visible and near-
infrared/infrared (IR) radiation, respectively, which 
is influenced by atmospheric temperature, moisture, 
and cloud properties. One method to forecast CI is to 
measure the change in cumulus cloud properties over 
a short period of time (0-30 mins) to determine their 
likelihood of developing into thunderstorms during 
the next hour. Several CI forecasting algorithms have 

been developed to accomplish this task using various 
thresholding and/or regression techniques (e.g., Roberts 
and Rutledge 2003; Mecikalski and Bedka 2006; 
Mecikalski et al. 2010; Henderson et al. 2021; Leinonen 
et al. 2022). While the details among each algorithm 
differ, they all start by determining the location of 
growing cumulus clouds and creating cloud objects 
from those data. The cloud objects are then tracked over 
a period of time and changes in brightness temperatures 
(BTs) over various channels are determined. In many 
algorithms, CI requires that IR BTs (e.g., 10.3 µm) for 
a cloud object decrease as a function of time indicating 
that cloud tops are cooling because of an active updraft. 
Additional criteria relating to cloud depth and object 
size are also utilized (as described in section 3), as well 
as using various infrared, channel difference methods 
to assess cloud top altitude relative to the tropopause, 
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and cloud-top glaciation. These algorithms have been 
developed and refined over the previous 15 years 
allowing for ongoing improvements in CI forecasting.
	 Recently, another tool for CI forecasting has been 
developed in the form of rapidly cycled NWP systems 
that generate high-frequency (e.g., 5 min) output over 
a regional domain in a real-time environment. One 
such system is the Warn-on-Forecast System (WoFS) 
developed by the National Severe Storms Laboratory 
in collaboration with the University of Oklahoma, 
Global Systems Laboratory, National Aeronautics and 
Space Administration, Storm Prediction Center, and 
National Weather Service partners (Stensrud et al. 
2013; Wheatley et al. 2015; Jones et al. 2016, Skinner 
et al. 2018; Yussouf and Knopfmeier 2019; Jones et al. 
2020; Gallo et al. 2022). The WoFS is a continually 
cycled ensemble data assimilation and forecasting 
system run daily over a moveable and flexible domain 
where high impact weather is expected. The resulting 
rain rate forecasts are one method that can be used 
to determine where convection is likely to occur. For 
the purposes of this work, convection is defined by an 
area of precipitation where radar reflectivity > 40 dBZ 
associated with clouds containing frozen hydrometeors 
indicating the presence of a buoyant updraft. One 
limitation of this method for assessing the convective 
potential is that any CI forecast made from WoFS 
output relies on the model generating precipitation, 
which is converted to simulated radar reflectivity for 
this application. It is also possible to create synthetic 
satellite imagery from the model output, which can 
show where cloud growth is occurring. Currently, this 
cloud growth is assessed in a qualitative manner and 
no objective method to determine the CI potential from 
this output exists. Recently, the capability to forecast 
lightning has been added to WoFS and it can represent 
where CI occurs. However, the current product generally 
requires hydrometeor concentrations corresponding to 
reflectivity > 40 dBZ; thus, providing little advantage 
over the reflectivity CI definition used here.  
	 To address this forecast limitation, a modified 
version of the Mecikalski and Bedka (2006) and 
Mecikalski et al. (2015) CI algorithm is employed on 
5-min resolution synthetic satellite imagery from WoFS 
to generate a probabilistic CI forecast parameter. Ice 
cloud objects will be tracked over a 10 min interval 
and assessed to determine whether or not they represent 
those that are likely to generate thunderstorms. In an 
operational environment, WoFS output is often viewed 
as products for each 5 min forecast interval. Given the 

current run-time of the system, a synthetic satellite-
based CI forecasting product can provide a 5-10 min CI 
forecast advantage over waiting for WoFS reflectivity 
> 40 dBZ to be displayed. In addition, this product 
also distinguishes between whether or not developing 
precipitation is convective or stratiform in nature and 
whether or not lightning may occur.  Both of these 
advantages can be important for increasing the forecast 
lead-time of high impact weather events as forecasters 
can begin preparations for advising the public on 
pending significant weather.

2.	 Warn-on-Forecast System

	 The WoFS is an ensemble-based NWP system to 
generate short-term (0-6 hour) probabilistic forecasts 
of high impact weather phenomena such as supercell 
updraft rotation, severe wind gusts, large hail, and 
heavy rainfall that may be conducive to flash flooding. 
The system has a horizontal grid spacing of 3 km and is 
initialized in the mid-morning using initial and boundary 
conditions from the 36 member High Resolution 
Refresh (HRRR) ensemble (Dowell et al. 2022; James 
et al. 2022). Conventional, WSR-88D radar reflectivity 
and radial velocity, and GOES-16 cloud water path and 
clear-sky water vapor radiances, are assimilated at 15 
min intervals for the duration of the event to continually 
update the cloud and precipitation fields in the model 
analysis. Boundary conditions are updated at hourly 
intervals. Forecasts are launched at 30 min intervals 
during the cycling process for the first 18 ensemble 
members, generating output at 5 min intervals. As of 
the summer of 2022, a 6 hour forecast takes ~40 mins to 
complete. The WoFS has been successfully used as part 
of the Hazardous Weather Testbed and in operations 
by the Storm Prediction Center and National Weather 
Service (Gallo et al. 2022). However, the WoFS value 
to CI forecasting has remained challenging by the time 
needed for >40 dBZ reflectivity to be forecast.

3.	 WoFS convection initiation product

	 The CI algorithm for GOES imager observations 
defined by Mecikalski and Bedka (2006) and Mecikalski 
et al. (2015) has been modified and applied to WoFS 
synthetic satellite imagery forecasts. Synthetic satellite 
imagery for each ensemble member and forecast time 
is generated by using the Radiative Transfer for the 
TIROS Operational Vertical sounder (RTTOV) model 
to translate the WoFS’s members atmospheric state into 
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radiances (Saunders et al. 2018). For this work, the 
radiances are calculated using the coefficients generated 
for the GOES-16 ABI. The process of calculating the 
CI product begins by classifying areas by clear, ice 
cloud (non or pre-convective), and other cloud types in 
each ensemble member (Fig. 1). Ice clouds are defined 
where model ice water path (IWP) is greater than 0.25 
g kg-1 and 10.3 µm BT is less than 273.15 K. The IWP 
threshold was selected to remove non-convective thin 
cirrus areas from the CI forecast assessment. Cloud 
objects are generated from the convective cloud areas 
using the “SciPy” python package (Virtanen et al. 2020). 
The maximum search radius for a matched object is 18 
km per 5 min interval. This radius is designed to take 
into account the shifting of centroid locations due to 
changing object characteristics in addition to movement 
from one time to the next.  The minimum number of grid 
points per object is 4 and the maximum is 200. These 
criteria were selected to remove very small clouds (often 
a result of model noise) and mature storms from the 
cloud objects to be assessed for CI. Remaining cloud 
objects at a particular forecast time (t=0) are matched 
with those from the previous two forecast times (t –5, 
–10 min) and those which are matched at all three times 
are then assessed for potential CI. Cloud objects at the 
forecast time are classified as CI or non-CI objects 
based on a series of tests outlined in Fig. 1.
	 From Fig. 1, first, the mean of the five coldest 
10.3 µm BT grid points for each matched object must 
decrease as a function of time by at least 6 K, consistent 
with cloud top cooling (Mecikalski and Bedka 2006). 
Second, the difference between the 6.2 µm and 10.3 µm 
channels (BT62 – BT103) and between 13.3 µm and 10.3 
µm channels (BT133 – BT103) at t=0 must be less than –1 
K. Both differences indicate that convective clouds are 
still growing and have not reached the tropopause and 
matured (Ackerman 1996; Schmetz et al. 1997; Ellrod 
2004). Third, the difference in the 10 min trend of BT133 
and BT103 must be less than –3 K, which also indicates 
that cloud top height is growing as a function of time. 
Finally, the size of the cloud object must increase during 
the 10 min period. Additional criteria were tested, 
but they did not provide any benefit to the set of tests 
already being used.
	 If all criteria are reached for a particular cloud 
object, a binary true/false CI parameter for those grid 
points encompassing that object is set to ‘true’. Once 
the CI parameter has been calculated for each ensemble 
member at a particular forecast time, the probability 
of CI is determined by the proportion of members 

that satisfy the CI parameter for 15 or 27 km diameter 
neighborhoods surrounding a grid point (Schwartz 
and Sobash 2017). Probabilistic CI plots are then 
generated at each forecast time starting at 10 mins after 
the initialization time for display to forecasters. No 
smoothing is applied to the plots at this time.

4.	 Forecast results

	 The WoFS CI product was tested on several spring 
2022 high impact weather days. Two examples from 
29 April and 10 May 2022 are provided to assess its 
potential to improve CI forecasting. For 29 April, a 
set of ensemble forecasts was initiated at 1900 UTC 
at which time ongoing precipitation was occurring in 
western Nebraska (NE), while evidence of developing 
convection was beginning to occur in western Kansas 
(KS). At 1930 UTC, simulated BT103 30 min forecast 
imagery from one ensemble member shows both 
features (Fig. 2a). By 1940 UTC, BT103 associated 
with the clouds in KS have noticeably cooled compared 
to 1930 UTC, indicating strengthening convection in 
the model (Fig. 2c). Applying the convective cloud 
mask highlights the location of the growing ice-clouds 
(Fig. 2d-f). Convective cloud objects are then defined, 
and are shown in Fig. 2 (g-i). Note that the ice clouds 
associated with the ongoing NE precipitation (denoted 
by “X”) are not considered potential CI objects. The 
remaining objects in KS denoted at “A” and “B” grow 
in size between 1930 and 1940 UTC. At 1940 UTC, the 
CI algorithm for this ensemble member is triggered for 
the largest two objects in KS (Fig. 2i). 
	 The same method is applied to all ensemble 
members, and Fig. 3 shows the probability of CI within 
15 and 27 km neighborhoods at 1940 UTC. An area of 
CI probability > 30% is forecast in a region in western 
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Figure 1. Flowchart for the WoFS CI algorithm using 
synthetic satellite forecast output. Click image for an 
external version; this applies to all figures hereafter.

http://nwafiles.nwas.org/jom/articles/2023/2023-JOM10-figs/Fig_01.png
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KS using the 27 km neighborhood (Fig. 3b). This plot 
indicates that approximately one-third of the 18 ensemble 
members contain CI objects in this area at 1940 UTC. 
The larger the neighborhood size, the more likely high 
probability areas will be defined, at the cost of a greater 
uncertainty in forecast CI location. The performance of 
each member can be tracked by calculating the number 
of forecast composite reflectivity grid-points > 40 dBZ 
within the CI area from a period 10 minute prior to a 
valid CI forecast to 30 minutes after (Fig. 3c). At 1940 
UTC, a total of 9 members forecast CI somewhere 
in the domain. Some members, including the one 
described above (mem 8), already have > 40 dBZ grid-
points present, while others do not. In six members, the 
number of > 40 grid points in the CI area increases in 
the following 15 mins. Afterward, precipitation moves 

out of the original CI area, and the number decreases.
	 Overall testing of this system over four separate 
events indicated that CI probabilities between 30-
50% represented strong signals for future CI. Since 
the early phases of convection are often not analyzed 
by the model, spread in forecast CI is often large 
(Guerra et al. 2022). Thus, it is extremely difficult 
or uncommon for CI probabilities to reach values in 
excess of 50% at a particular location. It should also be 
noted that the CI probabilities remain low nearby the 
mature thunderstorms in NE, due to cloud object size 
exceeding the algorithm limit (Fig. 1). This is a positive 
result since the goal of this product is to highlight where 
convection will develop, not where it already exists.  
	 The usefulness of this product is determined by 
whether or not it indicates that precipitation is likely 
to develop based on the model ensemble, and if it will 
be convective in nature prior to it being displayed 
to forecasters in the existing WoFS product suite. 
Currently, WoFS displays reflectivity “paintballs” from 
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Figure 2. Synthetic satellite BT103 imagery from 
member 10 of a WoFS forecast initiated on 1900 UTC 
29 April 2022 valid at 1930 (a), 1935 (b), and 1940 UTC 
(c). Ice cloud areas at the same forecast time (d, e, f) and 
convective cloud objects that satisfy the conditions for 
potential CI objects at each forecast time (g, h, i). Red 
squares denote that the CI algorithm has been triggered 
for those particular objects. Outlines of 1940 UTC 
cloud objects (t=0) in the CI algorithm are provided on 
the 1930 and 1935 UTC images for comparison.

Figure 3. Probability of CI = true for 15 (a.) and 27 
km (b.) neighborhoods valid at 1940 UTC for forecasts 
initiated at 1900 UTC 29 April 2022. Areas where 
probability exceeds 30% are indicative of where CI 
is likely in this system. The number of forecast grid-
points where composite reflectivity is > 40 dBZ for each 
ensemble member in the area where CI is forecast for 
that member at t=0 (1940 UTC) from 10 minutes prior 
to the CI forecast until 30 mins afterward (c.). Bold line 
indicates the member described in Fig. 2.

http://nwafiles.nwas.org/jom/articles/2023/2023-JOM10-figs/Fig_02.png
http://nwafiles.nwas.org/jom/articles/2023/2023-JOM10-figs/Fig_03.png
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each member where forecast composite reflectivity is > 
40 dBZ. As a result, the CI forecast would be considered 
a success if a high probability of CI existed before the 40 
dBZ threshold has been exceeded. Figure 4 (paintballs 
a,c) shows the contours of reflectivity > 40 dBZ for 
each ensemble member at 1940, 1955, and 2010 UTC. 
At 1940 UTC, the existing precipitation in NE is well 
forecast by most members. Further south, only three 
members generate > 40 dBZ at this time (Fig. 4a). By 
1955 UTC, the number of members with convection 
has increased significantly with a corresponding 
increase in coverage (Fig. 4b). The increasing trend 
continues as shown in the 2010 UTC forecast (Fig. 4c). 
Forecast composite reflectivity from ensemble member 
8 during this period also shows increased intensity and 
coverage. However, it should also be noted that a small 
area of composite reflectivity > 40 dBZ already exists 
at the 1940 UTC forecast with the western CI object, 
indicating that the product’s lead-time might be small 
in some cases (Fig. 4d-f). Overall, the CI forecast is 
generally consistent with observations with an area of 
Multi-Radar / Multi-Sensor (MRMS) reflectivity > 35 
dBZ located in western KS at 1940 UTC, which grows 
into precipitation with reflectivity > 55 dBZ by 2010 
UTC (Fig. 4g-i). There is a small displacement error 
between the maximum CI probabilities and observed 
CI, but the timing and general region are consistent. 
	 Another example of this CI product is shown for 
40 min forecasts initialized at 1900 UTC on 10 May 
2022 in southwestern TX. Between 1930 and 1940 
UTC several areas of existing and growing convection 
are evident from BT103 imagery (Fig. 5a-c) and a large 
thunderstorm is already forecast in northern Mexico at 
1930 UTC. A growing convective cell is also present 
in far southwest TX during this period and defined as 
cell “A”. Further north, areas of mid-to-upper level ice 
clouds are forecast over a large region. However, close 
inspection shows two areas of significant cloud cooling, 
defined as cells “B” and “C”. Applying the ice-cloud 
mask highlights these areas along with some of the 
other ice-cloud features (Fig. 5d-f). The non-convective 
ice-cloud features such as “X” and “Y” are removed 
when determining the location of convective cloud 
objects with cells A, B, and C now clearly evident (Fig. 
5g-i). At 1940 UTC, the CI parameters are met for A, B, 
and C indicating that CI is likely in these areas. In the 
case of cell “A”, the very cold cloud tops at 1930 UTC 
indicate convective precipitation is already ongoing. 
This object lies on the edge of the growth-size criteria in 
the CI algorithm, and by 1945 UTC, the CI parameter is 

no longer triggered (not shown). The other two objects 
are much smaller and appear pre-convective in nature. 
	 The probabilistic CI forecasts valid at 1940 UTC 
for the 15 and 27 km neighborhoods show two areas 
of CI probabilities > 30%, which are associated with 
cells “B” and “C” (Fig. 6). A third area exists along the 
TX – Mexico border, but note that the CI probability 
associated with cell “A” is rather low. For cells “B” and 
“C”, the CI algorithm is triggered for several members 
and most do not have convection in these areas at 1940 
UTC. The 40-dBZ paintball plots at this time show 
only two members with convection near cell “B” and 
only one near cell “C” (Fig. 7a). Only a single member 
forecasts reflectivity > 40 dBZ corresponding to cell 
“A”, which happens to be the member shown above. 
This is evident on the probabilistic plots in Figure 6 
as one large square of 5% probability at this location, 
with a slightly higher value in the southwest corner of 
this square.  Twelve members forecast CI within this 
domain at 1940 UTC and for nine members including 
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Figure 4. Areas of forecast composite reflectivity > 40 
dBZ for all ensemble members at 1940 (a), 1955 (b), and 
2010 UTC (c) with each ensemble member represented 
by a different color. Corresponding member 10 forecast 
reflectivity at these times (d, e, f) along with observed 
MRMS reflectivity at these times (g, h, i).

http://nwafiles.nwas.org/jom/articles/2023/2023-JOM10-figs/Fig_04.png
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the one described above (mem 2) (Fig. 6c). For these 
members, the number of forecast grid-points > 40 dBZ 
with the CI areas increases during the following 30 min 
period. 
	 Composite reflectivity forecast for this time shows 
cell “A” to be well on its way to development, with 
“B” and “C” showing increasing reflectivity values 
with “B” already having a small area of reflectivity 
> 40 dBZ (Fig. 7d). Also forecasted are several areas 
of non-convective precipitation between cells “B” 
and “C”, which are correctly not identified by the 
CI forecast. By 1955 UTC, many more ensemble 
members forecast convection associated with cells 
“B” and “C”, with some development further south, 
but displaced from cell “A” (Fig 7b, d). By 2010 UTC, 
most members are forecasting convection associated 
with “B” and “C” indicating that the CI forecast was 
accurate when compared against forecast reflectivity. 
Observed MRMS reflectivity between 1940 and 2010 
UTC shows convective development in these two areas 
with 40 dBZ reflectivity being present with cell “B” at 
1955 UTC and cell “C” at 2010 UTC (Fig. 7g-i). In both 
cases, the forecast and observations line up quite well. 
Also of note is that the MRMS observations also show 
a developing storm roughly corresponding to cell “A”. 

This indicates that even low-probability forecast events 
may still occur.

5.	 Conclusions

	 The WoFS-based CI nowcast product was 
developed, and demonstrated using four severe weather 
cases occurring in April - May 2022, and two examples 
described here (29 April and 10 May) show the potential 
of this product as well as its limitations. As for the 
two other cases, WoFS substantially over-forecasted 
thunderstorms for one (2 May), and the other (31 May) 
performed very similarly to the 10 May case. The goal 
of this product is to both improve the lead-time for 
potential CI forecasting within WoFS and also compared 
to observations. The focus of this work is on the first 
goal, with future work focused on a more complete 
verification once the CI has matured through additional 
testing. The initial product generally highlighted 
areas where forecast convection was forming and in 
its early development stages. False alarms associated 
with mature thunderstorms and non-convective 
precipitation were low. For the 29 April example, the 
lead-time between the probability of CI exceeding 30% 
and a similar number of members generating areas of 
composite reflectivity > 40 dBZ was only 10-15 mins. 
In practical terms, this corresponds to only a 2-3 min 
lead-time in the displayed forecast product. Recall that 
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Figure 5. As in Fig. 2, but for 1930, 1935, and 1940 
UTC ensemble member 6 synthetic satellite imagery, 
ice clouds, and CI objects for a forecast initiated at 
1900 UTC 10 May 2022. For this case, individual storm 
objects of interest are denoted as “A”, “B”, and “C”.  

Figure 6. As in Fig. 3, but for 10 May 2022, and the 
member described in Fig. 5. 

http://nwafiles.nwas.org/jom/articles/2023/2023-JOM10-figs/Fig_05.png
http://nwafiles.nwas.org/jom/articles/2023/2023-JOM10-figs/Fig_06.png
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forecast images are displayed as they are generated 
and a lead-time of 15 min corresponds to three images, 
which are created every 1-2 min. The 10 May example 
performed somewhat better, with slightly longer CI 
lead-times.  Lead time relative to severe convection was 
much larger (> 1 hour) as the first severe weather reports 
associated with the CI related storms did not occur 
until after 2100 UTC.  For all cases, the probabilistic 
CI product was most effective in the 0-2 hour portion 
of the forecast period. Afterward, the ensemble spread 
becomes too large for CI probabilities much above 10% 
to be generated. 
	 One major limitation of this product is that a 
significant number of ice-hydrometeors must be 
generated by the model prior to being identifiable 
on synthetic satellite imagery. Generally, high ice-
hydrometeor production corresponds to the model 
already resolving a significant convective storm updraft, 
with precipitation already occurring. Thus, the potential 
forecast lead time is lower (~15 min) in this system than 
with GOES satellite-based observations. One potential 
remedy is a higher resolution model. Tests of a 1-km 
WoFS showed a longer period between the first ice-
hydrometeors being generated and precipitation being 
observed. Choices in the model cloud microphysics 
schemes are also likely to impact lead-time and further 
tuning of these schemes may be required. Ideally, this 
would increase the lead time closer to the 30 min period, 

which is where we believe the product would have its 
greatest impact. Overall, the results showed promise 
and continued refinement is underway. It is expected 
that this product will be generated in real-time during 
upcoming Hazardous Weather Testbeds.
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